
15 - Build Systems, Git Merging & Working
Across Branches
CS 2043: Unix Tools and Scripting, Spring 2016 [1]

Stephen McDowell
March 2nd, 2016

Cornell University

Table of contents

1. Build Systems

2. Merging Like a Boss

3. Working Across Branches

1

Some Logistics

• Updates to the demos and some backlogged lectures are up.
• Python goodies, why I had you install ipdb (and Python 3)
• The Week of the 18th proposals (purely supplemental):

• Monday, March 14th: how to install Linux natively.
• Wednesday, March 16th: in-depth build-systems, examples on
compiling from source and when you may need to do it.

• Friday, March 18th: tournament? Hosted by not me (out of
town).

• Suggestions welcome if you would rather see something else.
• Alternate possibility: filesystems, automounting, management,
growing / shrinking volumes.

• HW2 due tonight...

2

Build Systems

What for?

• Build systems are there to make your life easy. It would be
entirely infeasible to require an individual user to compile
everything on their own without guidance.

• With good build systems comes the implicit necessity for good
documentation!

• A README at the very least, preferably an INSTALL file with
further guidance, listing of required packages, platform notes (if
applicable), etc.

• The core concept: automate as much as possible.
• If for whatever reason you have to compile the source (your
own project, need alternative functionality), you will need to
know how to use these tools.

3

Build Systems in the Wild

• You will likely encounter the following kinds of build systems:
• A Make project (just includes a Makefile).
• A CMake project (includes a CMakeLists.txt file).
• An auto-tools project (usually of the form setup.sh).
• A Python build (python setup.py install).

• Each have their quirks and benefits.
• You may have to create your own.
• Or you may be able to get away with just knowing how to
execute them.

• It very much depends on the situation.

4

Make

• Manage compilation of programs written in languages like
C/C++.

• Used to automatically update any set of files that depend on
another set of files.

• The Makefile (capital M) is the proper name:
• If there exists a Makefile in the current directory, just execute
make.

• ...assuming it was written correctly...
• Can execute make -f <filename> if named something else.

• The Makefile describes how files depend on each other, and
how to update out-of-date files.

• Makes use of patterns, rules, and variables to eliminate
redundancy.

• Uses macros and control operation.

5

A Sample Makefile

myapp: file1.o file2.o
gcc -o myapp file1.o file2.o

file1.o: file1.c macros.h
gcc -c file1.c

file2.o: file2.c macros.h
gcc -c file2.c

• Describes the dependencies of myapp: the compiled file1
and file2 object files.

• These dependencies are recursively defined in the subsequent
file1.o and file2.o targets.

• Both of these targets depend on macros.h.
• You can define as many targets as you need.

6

Make Specifics

• Properly defined? .PHONY, all, clean
• Must use tab characters. ALWAYS. ewwwww....
• Automatic generation magic.
• Lecture slides Makefile.
• The syntax is pretty crazy.
• make followed by sudo make install

7

CMake

• Configure Make.
• Cross-platform if done right.
• Example nori.
• CCMake: Configure CMake. LOL.
• Creates build systems for you.

• General idea (on Unix systems):

>>> mkdir build
>>> cd build
>>> cmake ..
>>> ccmake ..
>>> make

8

Autotools

Basically you just run setup.sh. If it fails, the standard is to
tell you exactly why, e.g. point you to files that you need or
libraries you need to install.

9

Python Setup

• Generally: python setup.py install
• You may need to put a sudo in front of that.

10

Packaging your Packages

• Make an rpm:
http://www.thegeekstuff.com/2015/02/rpm-build-package-example/

• Make a ppa:
http://askubuntu.com/questions/71510/how-do-i-create-a-ppa

11

http://www.thegeekstuff.com/2015/02/rpm-build-package-example/
http://askubuntu.com/questions/71510/how-do-i-create-a-ppa

Merging Like a Boss

Lets do it

http://www.rosipov.com/blog/use-vimdiff-as-git-mergetool/
git config merge.tool vimdiff
git config merge.conflictstyle diff3

http://stackoverflow.com/a/1251696/3814202
git config --global mergetool.keepBackup false

12

Working Across Branches

What do you take from where?

• git pull origin <branch>
• git checkout <branch> -- file
• git ls-tree
• get crazy with it

13

References I

[1] B. Abrahao, H. Abu-Libdeh, N. Savva, D. Slater, and others
over the years.
Previous cornell cs 2043 course slides.

14

	Build Systems
	Merging Like a Boss
	Working Across Branches

