
13 - Python, Git Branching Wrap-up
CS 2043: Unix Tools and Scripting, Spring 2016 [1]

Stephen McDowell
February 24th, 2016

Cornell University

Table of contents

1. Python Overview

2. Scripting with Python

3. Git Branching Wrap-up

2

Some Logistics

• HW2 and awk: read Piazza post 144. No floating point
arithmetic will be accepted.

• Notes on notes, A2.
• (poll) A2 and its due date, and what our options are.

• Can push due date back.
• Have 3 assignments instead of 4, but HW3 will be longer.

3

Python Overview

What is Python?

• Yet another programming language you can use in your daily
hacking.

• Extremely convenient, especially where String manipulation
and lists are concerned.

• This all comes at a cost: it is an "interpreted" language.
• In terms of scripting and what you have seen in this class so far,
that isn't all that important.

• For the most part, everything we have seen works in a similar
way: as a script, it runs top-down.

• Raw Python code is "compiled-on-the-fly" as it executes, but
you can make it run very fast.

• Use libraries such as numpy, scipy, pandas, and many more.
• Write your own C code and use Cython.
• Doing it on your own is much more challenging, and often has
little payoff.

5

Why Python?

• Easy to test concepts using the interpreter (interactive).
• I often times will just bust out the interpreter if I need to check
some math really quickly.

• You have the ability to write object-oriented code if you want,
but you can also just write scripts.

• Wide range of built-in functions to accomplish pretty much
everything you want to do:

• Create ranges of numbers easily.
• Generate random numbers with ease.
• Write to and read from files like no other language can.
• Honestly, there are way too many examples. Python is great!

• Easy to play with: just type python and hit enter to bring up
the interpreter.

6

The Quick and Dirty Basics

• bool: boolean vales (True and False - capital first letter).
• int: whole numbers.
• float: decimal numbers.
• str: strings. Can use 'single quotes' or "double
quotes".

• list: uses brackets:
[0,3,5]
["mixed",3.4,"data",False,"types"]

• tuple: use parenthesis:
(0,3,5)
("mixed",3.4,"data",False,"types")

• dict: map keys and values
{"a" : 1, 3 : "three", 3.999 : "four"}

• CAUTION: strings and tuples cannot be changed. EVER.
• Constantly "updating" the value of a string?
• You are making new strings every single time. 7

Indexing Items

• Starts at 0, goes up to but not including len(item).
• Can use splicing to grab ranges of valid indices!

>>> a_list = [1, 2, 3, 4, 5, 6]
>>> a_list[0]
1
>>> a_list[-1]
6
>>> len(a_list)
6
>>> a_list[6]
Traceback (most recent call last):
File "<stdin>", line 1, in <module>

IndexError: list index out of range
>>> a_list[1:4]
[2, 3, 4]

>>> a_string = "123456"
>>> a_string[0]
'1'
>>> a_string[-1]
'6'
>>> len(a_string)
6
>>> a_string[6]
Traceback (most recent call last):

File "<stdin>", line 1, in <module>
IndexError: string index out of range
>>> a_string[1:4]
'234'

8

Working with Lists

• Reverse a list with list_variable.reverse()
• Append to a list with list_variable.append(item)
• Sort a list with list_variable.sort()
• Get a separate sorted list without changing the original list:
new_list = sorted(orig_list)

• Find the index of an item with
list_variable.index(item)

• Retrieve the last element with list_variable.pop()
• You can emulate stacks and queues easily with python lists.

• Get the documentation with help(list)

9

Working with Dictionaries

• Declare in-line:
• d = {'key1' : 'val1', 'key2' : 'val2'}

• Declare an empty dictionary: d = {}
• Get the list of keys with d.keys()
• Get the list of values with d.values()
• Can loop through dictionaries with ease:

>>> d = {'key1' : 'val1', 'key2' : 'val2'}
>>> for k, v in d.iteritems(): # replaced by items() in py3

print(k, v)
key2 val2
key1 val1

• Add / overwrite items with d['key'] = 'value'

10

Python is Powerful and Flexible

• By now you have heard me say something along the lines of " if
it's more than 10 lines I just do it in Python".

• Here is why:
• You have access to your favorite POSIX sets.
• Formatting strings is superbly powerful.
• Did I mention Python has probably the best documentation of
any language ever?

• Very easy to get something out quick and correct.
• Loops are flexible and easy.
• Functional if you need it (lambda).

• Extraordinary type-checking system. Use type(variable) to
see what it currently is.

• Exception handling is easy.
• Executing system calls (e.g. unix shell commands) is as easy as
importing a module.

• Operator overloading: read Kenneth Love's article in [2]. Many
other excellent resources from him linked on that site.

11

https://docs.python.org/2/library/string.html#string-constants
https://docs.python.org/2/library/string.html#format-examples

Scripting with Python

Writing Python Code

• PYTHON 3 IS NOT COMPATIBLE WITH PYTHON 2.
• Easy example:
• Python 2 (no need for parentheses): print "a", "b", "c"
• Python 3 (need parentheses): print("a", "b", "c")

• Python is parsed by white-space:
• Bad indentation will either lead to unexpected results, or
program crash.

• In terms of the shebang:
• Writing python2 code: #!/usr/bin/env python
• Writing python3 code: #!/usr/bin/env python3

13

Be Aware

• The xrange function in Python 2 will prevent you from
crashing on large lists.

• Regular range will create an entire list first.
• The xrange functionality of iteration instead of list entirely
replaced range in python 3, so xrange does not exist
anymore (just range)!

• There are many other important differences between python 2
and python 3.

• In terms of comparisons:
• The == operation calls __eq__ (if defined), which is value
comparison.

• Comparing id(var1) == id(var2) with the is keyword
does reference comparison (are these two literally the same
thing in memory).

• Extremely important to know the difference for str objects,
since strings are immutable. Example on next slide. 14

String Comparison

#!/usr/bin/env python
^^^^^^ could be python3 too...
Define a simple function to print various relations...
...string formating is really convenient!
def eval(s1, s2):

print("'{0}' == '{1}': {2}".format(s1,s2,s1 == s2))
print("'{0}' is '{1}': {2}".format(s1,s2,s1 is s2))
print(" id(s1): {0}".format(id(s1)))
print(" id(s2): {0}".format(id(s2)))

#
Make some strings and evaluate them...
#
x = "dog"
y = "cat"
eval(x,y)
#
Change the strings and evaluate again...
#
print("\n...change value of y to dog...\n")
This may seem like a crazy way to make "dog", but
Python is smart enough to know that if you say
#
y = "dog"
#
Given that x is already that value, it will point
to it instead of making a new one. This just forces
the creation of a new string.
y = ''.join(char for char in ['d','o','g'])
eval(x,y) 15

Working with Files

• Although there are other ways to open files, you should do this
way:

with open("filename", "r") as f:
for line in f:

print(line)

• There are different file modes, e.g. r is read, w is write (but will
overwrite if the file exists).

• The with statement in python is pure magic, and if your code
crashes for whatever reason python will go through and close
the file properly for you. There are many other cases you will
find the with statement superior, e.g. with threads and
locks (CS 4410).

16

Git Branching Wrap-up

Lets Make our Own Branches

Let's make our own feature branch:

https://github.com/cs2043-sp16/lecture-demos/tree/master/lec13

18

https://github.com/cs2043-sp16/lecture-demos/tree/master/lec13

References I

[1] B. Abrahao, H. Abu-Libdeh, N. Savva, D. Slater, and others
over the years.
Previous cornell cs 2043 course slides.

[2] K. Love.
Operator overloading in python.
http://blog.teamtreehouse.com/
operator-overloading-python.

19

http://blog.teamtreehouse.com/operator-overloading-python
http://blog.teamtreehouse.com/operator-overloading-python

	Python Overview
	Scripting with Python
	Git Branching Wrap-up

