
12 - Awk/Gawk, More Git Branching
CS 2043: Unix Tools and Scripting, Spring 2016 [1]

Stephen McDowell
February 24th, 2016

Cornell University

Table of contents

1. AWK / GAWK

2. More Branching

2

Some Logistics

• HW2 is online...officially!
• Subtle changes to README.md, none that are important
except:

• (OH Yesterday): I am giving sample files.
• Lecture 08 demo will be updated soon: using different
separators in sed.

• Excellent Piazza question: why is read behaving this way?
• Directory structure sort of changed, but only in that you get
more files. No changes to instructions.

• Challenge task at end.
• You are FORBIDDEN from using today's lecture in HW2, except for
the gandalfify_extreme.sh challenge question.

• (Poll) should I even cover Python?

3

AWK / GAWK

awk Introduction

• awk is a programming language designed for processing
text-based data.

• Allows easy operation on fields rather than full lines.
• Works in a pattern-action manner, like sed.
• Supports numerical types (and operations).
• Supports control-flow (e.g. if-else statements).

• Created at Bell Labs in the 1970s.
• Alfred Aho, Peter Weinberger, and Brian Kenrighan.
• An ancestor of perl, a cousin of sed.

• Very powerful.
• It's Turing Complete!

5

gawk

• gawk is the GNU implementation of the awk programming
language.

• On BSD/OSX, it is just called awk.
• On GNU, it is technically gawk. But should reliably be
"symlinked" as awk.

• awk allows us to setup filters to handle text as easily as
numbers.

• The basic structure of an awk program is:
pattern1 { commands }
pattern2 { commands }
...

• Patterns can be regular expressions!
• Proceeds line by line, checking each pattern one by one,
executing commands if pattern is found.

6

Why use awk over sed?

• Convenient numerical processing.
• Variables and control flow in the actions.
• Convenient way of accessing fields within lines.
• Flexible printing.
• Built-in arithmetic and string functions.

7

Simple Examples

awk '/[Mm]onster/ {print}' frankenstein.txt
• Print all lines containing Monster or monster.

awk '/[Mm]onster/' frankenstein.txt
• If no action specified, default is to print the whole line.

awk '/[Mm]onster/ {print $0}' frankenstein.txt
• The $0 variable in awk refers to the whole line.

awk '/[Mm]onster/ {print $1}' frankenstein.txt
• The first item. Can be delimited by something other than
whitespace, just like sed.

• awk understand extended regular expressions by default :)
• We don't need to escape +, ?, etc!

8

BEGIN and END

• awk allows blocks of code to be executed only once, at the
beginning / end.

• With the script monstrosity.awk and frankenstein.txt
in current directory:

#!/usr/bin/awk -f
BEGIN { print "Starting search for monster..." }
/[Mm]onster/{ count++ }
END { print "Found " count " monsters in the book." }

• Use the -f in conjunction with shebang to cheat awk (it uses
the script itself).

>>> ./monstrosity.awk # hangs...
>>> ./monstrosity.awk frankenstein.txt # yay!
>>> awk -f monstrosity.awk frankenstein.txt # yay!

9

Important Variables

• NF: the number of fields in the current line.
• NR: the number of lines read so far.

• You cannot change NF or NR.

• FILENAME: the name of the input file.
• FS: the field separator.

• Change FS="," for a csv.
• Can also specify the -F flag for the FS.

10

Matching and awk

• awk can match any of the following pattern types:
• /regular expression/
• relational expression
• pattern && pattern
• pattern || pattern
• pattern1 ? pattern2: pattern3

• If pattern1, then match pattern2. Otherwise, match
pattern3.

• (pattern): parenthesis to group / change order of operations.
• ! pattern to invert.
• pattern1, pattern2: match pattern1, work on every line
until it matches pattern2.

• Cannot combine this...

11

Much Much More...

• Regular expression usage / comparisons:
https://www.gnu.org/software/gawk/manual/html_node/Regexp-Usage.html#index-_0021-_0028exclamation-

point_0029_002c-_0021_007e-operator

• More comparison operations:
https://www.gnu.org/software/gawk/manual/html_node/Comparison-Operators.html#Comparison-Operators

• Powerful built-in functions:
• toupper()
• tolower()
• exp(x): exponential of x
• rand(): random number between 0 and 1
• length(x): length of x
• log(x): returns the log of x
• sin(x): returns the sin of x
• int(x): convert to integer
• etc

• Wealth of information: http://www.grymoire.com/Unix/Awk.html 12

https://www.gnu.org/software/gawk/manual/html_node/Regexp-Usage.html#index-_0021-_0028exclamation-point_0029_002c-_0021_007e-operator
https://www.gnu.org/software/gawk/manual/html_node/Regexp-Usage.html#index-_0021-_0028exclamation-point_0029_002c-_0021_007e-operator
https://www.gnu.org/software/gawk/manual/html_node/Comparison-Operators.html#Comparison-Operators
http://www.grymoire.com/Unix/Awk.html

More Branching

Branching Continued

Lecture slides...PART II!

14

References I

[1] B. Abrahao, H. Abu-Libdeh, N. Savva, D. Slater, and others
over the years.
Previous cornell cs 2043 course slides.

15

	AWK / GAWK
	More Branching

