
11 - Advanced Bash, Git Branching
CS 2043: Unix Tools and Scripting, Spring 2016 [1]

Stephen McDowell
February 22nd, 2016

Cornell University

Table of contents

1. Bash Arrays

2. Git Branching

2

Some Logistics

• Homework 2...
• Last time: "...I wanted to get your HW to you. That will happen
tonight."

• ...will send the fake release out via Piazza.
• DO NOT UNDER ANY CIRCUMSTANCES ADD ANYTHING IN AN a2
FOLDER IN YOUR REPO!!!!!!

3

Bash Arrays

Bash Arrays

• Arrays in bash are extraordinarily flexible in some senses...
• ...and particularly finicky in other senses.
• The short version:
arr=(use parentheses and separate by spaces)

• Mixed types: my_arr=("a string" 1 twelve "33")
• Question: what are the types of twelve and "33"?

• twelve would be interpreted as a string.
• "33" can be either a string or a number!
• Types are not exactly a thing in bash.
• echo $((${my_arr[3]} + 99))

• Woah that syntax is crazy.
• Remember that ((double parens)) are arithmetic
expressions.

• The $ in front of them evaluated the expression.
• The last part is indexing the array, which we'll get to.

5

Citation Matters!

• The majority of the remaining examples are either copied or
modified from [2].

• This is an excellent resource, and you should explore it on your
own.

• I do not have time to cover all of the cool and obscure things
you can do with arrays.

• You should follow along either in a bash script, or in your shell.

6

Alternative Initialization

• Using (parentheses enumerations), and other
initializations, give you indices between 0 up to but not
including the length of the array.

• You can create your own indices instead!

arr[11]=11
arr[22]=22
arr[33]=33
arr[51]="a string value"
arr[52]="different string value"

• Of course, you can add on the indices to a (parenthetical
declaration) after the fact if you want.

• You cannot have an array of arrays.

7

Array Functions

• You perform an array operation with ${expr}.
• You use the name of the variable followed by the operation:

echo "Index 11: ${arr[11]}" # prints: Index 11: 11
echo "Index 51: ${arr[51]}" # prints: Index 51: a string value
echo "Index 0: ${arr[0]}" # DOES NOT EXIST! (aka nothing)

• Recall that the @ and * expand differently:

echo "Individual: ${arr[@]}"
Individual: 11 22 33 a string value different string value
echo "Joined::::: ${arr[*]}"
Joined: 11 22 33 a string value different string value

• Differently how?

echo "Length of Individual: ${#arr[@]}"
Length of Individual: 5
echo "Length of Joined::::: ${#arr[*]}"
Length of Joined::::: 5 8

Different HOW?!!!

• Easier to compare with loops, these will be in-line so you can
copy-paste.

• Remember that ; allows you to continue on the same line.
• Individual expansion (@):

for x in "${arr[@]}"; do echo "$x"; done
11
22
33
a string value
different string value

• Joined expansion (*):

for x in "${arr[*]}"; do echo "$x"; done
11 22 33 a string value different string value

• The * loop only executes once.
• General rule: if you want them all, use @ to expand. 9

Even More Initialization Options

• Evaluate expressions and initialize at once:

arr[44]=$((arr[11] + arr[33]))
echo "Index 44: ${arr[44]}" # Index 44: 44
arr[55]=$((arr[11] + arr[44]))
echo "Index 55: ${arr[55]}" # Index 55: 55

• Alternative index specifications:

new_arr=([17]="seventeen" [24]="twenty-four")
new_arr[99]="ninety nine" # may as well, not new
for x in "${new_arr[@]}"; do echo "$x"; done
seventeen
twenty-four
ninety nine

• Get the list of indices:

for idx in "${!new_arr[@]}"; do echo "$idx"; done
17
24
99 10

Array Splicing

• You can just as easily splice your arrays.
• Use @ to get the whole array, then specify the indices you wish
to splice.

• ${var[@]:start:end}
• Don't need to specify end (will take until last index).

zed=(zero one two three four)
echo "From start: ${zed[@]:0}"
From start: zero one two three four
echo "From 2: ${zed[@]:2}"
From 2: two three four
echo "Indices [1-3]: ${zed[@]:1:3}"
Indices [1-3]: one two three
for x in "${zed[@]:1:3}"; do echo "$x"; done
one
two
three
for x in "${zed[*]:1:3}"; do echo "$x"; done
one two three

11

More...

• This is the core functionality of arrays that I believe you will
profit from.

• This is actually not even close to what you can do with arrays
in bash.

• I highly suggest you go through the examples listed in [2].
• Search for Substring Removal for some insanely cool tricks!

12

Git Branching

Branching with Git

The Lecture Slides Repository!

14

References I

[1] B. Abrahao, H. Abu-Libdeh, N. Savva, D. Slater, and others
over the years.
Previous cornell cs 2043 course slides.

[2] B. R. Manual.
Bash reference manual: Shell parameter expansion.
https://www.gnu.org/software/bash/manual/
html_node/Shell-Parameter-Expansion.html.

15

https://www.gnu.org/software/bash/manual/html_node/Shell-Parameter-Expansion.html
https://www.gnu.org/software/bash/manual/html_node/Shell-Parameter-Expansion.html

	Bash Arrays
	Git Branching

