
08 - Superlative Streams
CS 2043: Unix Tools and Scripting, Spring 2016 [1]

Stephen McDowell
February 12th, 2016

Cornell University

Table of contents

1. Cutting and Pasting

2. Splitting and Joining

3. The Stream Editor (sed)

4. Sed Practice

2

Some Logistics

• HW1 due today at 5pm.
• OH Today: only 2pm - 3pm...thanks (again) Joe!
• On my usage of >, which will now become >>> for safety.
• Repository confusion:

• Do NOT fork the <usr>-assignments repositories!!!!!!
• Getting lectures easily: clone the lecture-slides repo,
pull as needed.

• Only fork the lecture-demos repo.
• This allows you to put your demo work online, get more practice
with git.

3

Cutting and Pasting

Chopping up Input

Cut
cut <options> [file]
- Must specify a list of bytes, characters, or fields.
- The file is optional this time, uses STDIN if unspecified.

- Use -b to extract using range of bytes.
- Use -c to extract using a range of characters.
- Use -f to extract a range of fields separated by a delimiter.

N Nth byte, character or field, counted from 1
N- from Nth byte, character or field, to end of line
N-M from Nth to Mth (included) byte, character or field
-M from first to Mth (included) byte, character or field

- Use -d to specify a delimiter (TAB by default).
- Use -s to suppress line if delimiter not found. 5

Cut Examples

employees.csv
Alice,female,607-123-4567,11 Sunny Place,Ithaca,NY,14850
Bob,male,607-765-4321,1892 Rim Trail,Ithaca,NY,14850
Andy,n/a,607-706-6007,1 To Rule Them All,Ithaca,NY,14850
Bad employee data without proper delimiter

Examples
• Get names, ignore improper lines:
>>> cut -d , -f 1 -s employees.csv

• Get names and phone numbers, ignore improper lines:
>>> cut -d , -f 1,3 -s employees.csv

• Get address (4th col and after), ignore improper lines:
>>> cut -d , -f 4- -s employees.csv

• Get 11th character of every line:
>>> cut -c 11 employees.csv 6

Splicing Input

Paste
paste [options] [file1] [file2] ...
- No options or files necessary...

...but relatively useless program without them.

- Use -d to specify the delimiter (TAB by default).
- Use -s to concatenates serially instead of side-by-side.
- No options and one file specified: just like cat.
- Use with -s to join all lines of file!

7

Paste Examples I

names.txt
Alice
Bob
Andy

phones.txt
607-123-4567
607-765-4321
607-706-6007

>>> paste -d , names.txt phones.txt > result.csv

result.csv
Alice,607-123-4567
Bob,607-765-4321
Andy,607-706-6007

8

Paste Examples II

names.txt
Alice
Bob
Andy

phones.txt
607-123-4567
607-765-4321
607-706-6007

>>> paste -d , -s names.txt phones.txt > result.csv

result.csv
Alice,Bob,Andy
607-123-4567,607-765-4321,607-706-6007

9

Paste Examples III

employees.csv
Alice,female,607-123-4567,11 Sunny Place,Ithaca,NY,14850
Bob,male,607-765-4321,1892 Rim Trail,Ithaca,NY,14850
Andy,n/a,607-706-6007,1 To Rule Them All,Ithaca,NY,14850
Bad employee data without proper delimiter

>>> paste -d "" -s employees.csv | \
cut -d , -f 1- --output-delimiter="" | \
tr -d "[:space:]"

output (all on one line...)
Alicefemale607-123-456711SunnyPlaceIthacaNY14850Bobmale6
07-765-43211892RimTrailIthacaNY14850Andyn/a607-706-60071
ToRuleThemAllIthacaNY14850Bademployeedatawithoutproperde
limiter

10

Splitting and Joining

Splitting Files

Split
split [options] [input] [prefix]
- Use -l to specify how many lines in each file.
- Default is 1000.

- Use -b to specify how many bytes in each file.
- The prefix is prepended to each file produced.
- Use -d to produce numeric suffixes instead of lexographic.
- Not available on OSX.

• Extremely useful for managing large streams of data.
• Remember that annoying dungeon folder?

• split -l 5 is what we did.

12

Joining Files

Join lines containing the same keys between two different files.

Join
join [options] file1 file2
- Join two files at a time, no more, no less.
- Default: files are assumed to be delimited by whitespace.
- Use -t <char> to specify an alternative single-character
delimiter.

- Use -1 field_number to join by the nth field of file1.
- Use -2 field_number to join by the nth field of file2.
- Field numbers start at 1, like cut and paste.

- Use -a f_num to display unpaired lines of file f_num.

13

Join Examples I

ages.txt
Alice 44
Bob 30
Candy 12

salaries.txt
Bob 300,000
Candy 120,000

>>> join ages.txt salaries.txt > results.txt

results.txt
Bob 30 300,000
Candy 12 120,000

14

Join Examples II

ages.txt
Alice 44
Bob 30
Candy 12

salaries.txt
Bob 300,000
Candy 120,000

>>> join -a1 ages.txt salaries.txt > results.txt

results.txt
Alice 44
Bob 30 300,000
Candy 12 120,000

15

The Stream Editor (sed)

Introducing...

Stream Editor
sed [options] [script] [file]
- Stream editor for filtering and transforming text.
- We will focus on sed's 's/<regex>/<text>' [file].
- Replace anything that matches <regex> with <text>.

- sed goes line by line searching for the regular expression.

• We will only cover the basics, as sed is an entire
programming language.

• As in there are entire books on it...
• What is the difference between sed and tr?

• sed can match regular expressions!
• sed also does a lot more.

17

A Basic Example

>>> sed 's/not guilty/guilty/g' filename

• Replaces not guilty with guilty everywhere in the file.
• CAUTION: You should be in the habit of using
single-quotes for strings with sed.

• don't have to escape every double-quote (").

• What happens if we do not have the g?
• Without the g, it will only do one substitution per line.

• There are definitely cases where you would want that!

18

Deletion

• Just like with tr we can do deletion with sed.
• sed '/regex/d' - deletes all lines that contain regex.
• Example:

>>> sed '/[Dd]avid/d' file1 > file2

• Deletes all lines in file1 that contain either David or david,
and saves the result into file2.

19

Regular Expressions

• The power of sed is that it treats everything between the first
pair of /'s as a regular expression.

• What does this do?

>>> sed 's/[[:alpha:]]\{1,3\}[[:digit:]]*@cornell\.edu/REMOVED/g' file

• Print a file with all netID@cornell.edu emails removed!

• Use -r (-E on BSD/OSX) to use extended regular expressions.

20

Saving Strings

• What does this do?

>>> sed 's/^\([A-Z][A-Za-z]*\), \([A-Z][A-Za-z]*\)/\2 \1/' file

• Searches for an expression at the beginning of the line of the
form e1, e2 where e1 and e2 are "words" starting with capital
letters.

• Placing an expression inside () tells the editor to save
whatever string matches the expression.

• Since () are special characters, we escape them e.g. with
\(\).

• We access the saved strings as \1 and \2.
• This script for example could convert a database file from

Lastname, Firstname - to - Firstname Lastname
21

More sed

• You can specify which lines to check by numbers or with
regular expressions:

checks lines 1 to 20
>>> sed '1,20s/john/John/g' file
checks lines beginning with "The"
>>> sed '/^The/s/john/John/g' file

• The & corresponds to the pattern found:

replace words with words in quotes
>>> sed 's/[a-z]\+/"&"/g' file

• Many more resources here:
http://www.grymoire.com/Unix/Sed.html

22

http://www.grymoire.com/Unix/Sed.html

Sed Practice

Extra Practice

Can be found here: https://github.com/cs2043-sp16/lecture-
demos/tree/master/lec08

24

https://github.com/cs2043-sp16/lecture-demos/tree/master/lec08
https://github.com/cs2043-sp16/lecture-demos/tree/master/lec08

References I

[1] B. Abrahao, H. Abu-Libdeh, N. Savva, D. Slater, and others
over the years.
Previous cornell cs 2043 course slides.

25

	Cutting and Pasting
	Splitting and Joining
	The Stream Editor (sed)
	Sed Practice

