
07 - Processes and Jobs
CS 2043: Unix Tools and Scripting, Spring 2016 [1]

Stephen McDowell
February 10th, 2016

Cornell University

Table of contents

1. Processes Overview

2. Modifying Processes

3. Jobs

4. Job Control Demo

2

Some Logistics

• HW1 due Friday, 2/12/2016 at 5pm
• Drop deadline is today.
• Lecture-demo solutions...thanks Joe!
• The nature of the material in this topic basically dictates not
covering OSX. They may exist, they may not.

• They may also give very different results.

3

Processes Overview

What is a Process?

• A process is just an instance of a running program.
• Not just a "program" - it is being executed.
• Not just a "running program", as you can execute the same
program multiple times.

• These would be multiple processes running an instance of the
same program.

• Example: if you open more than one terminal (windows or
tabs), you are running multiple processes of your shell.

• You can execute echo $$ to see the process of the current
running shell.

5

Identification

• Processes have a unique "Process ID" (PID) when created.
• The PID allows you to distinguish between multiple instances
of the same program.

• There are countless ways to discover the PID, as well as what
processes are running.

• These methods often depend on how much information you
want, as well as what your user priviliges are.

6

Identification: ps

Process Snapshot
ps [options]
- Reports a snapshot of the current running processes,
including PIDs.

- By default, only the processes started by the user.
- Use -e to list every process currently running on the system.
- Use -ely to get more information than you can handle.
- Use -u <username> to list all processes for user
username.

- Note: very different for BSD/OSX, read the man page...

• To see more information about a process, pipe through grep.
• For example: ps -e | grep firefox shows us the results
about firefox processes. 7

Identification: lsof

List of Open Files
lsof [options]
- Very similar to ps, with more information by default.
- Frequently used for monitoring port connections...
- Use -i to list IP sockets.
- E.g. lsof -i tcp:843 shows all tcp processes on port 843.

- Many options...read the man page if you are intrigued.

• As with ps, often best served with a side of grep.
• More useful for administration, especially when managing
a networked environment.

8

Resource Usage

Display and Update top CPU Processes
top [options]
- Displays the amount of resources in percentages each
process is using.

- Use -d <seconds> to control the update frequency.
- The act of monitoring is an expensive process...

- Use -u <user> to show only the processes owned by user.
- Use -p <PID> to show only the statistics on process with id
number PID.

• When used in conjunction with ps or lsof, can be a very
powerful analysis tool.

• Example sequence on the next page.
9

Example: Resource Monitoring

>>> ps -e | grep firefox
12975 ? 00:01:45 firefox
>>> top -p 12795
top - 09:37:56 up 1 day, 13:52, 5 users, load average: 0.19, 0.20, 0.19
Tasks: 1 total, 0 running, 1 sleeping, 0 stopped, 0 zombie
%Cpu(s): 1.1 us, 0.5 sy, 0.0 ni, 98.4 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 16386660 total, 5990760 free, 3562320 used, 6833580 buff/cache
KiB Swap: 4194300 total, 4194300 free, 0 used. 12551476 avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

12975 sven 20 0 1437888 396868 105116 S 1.7 2.4 1:46.39 firefox

• You'll be best off reading through the man page to understand
everything going on here.

• Some great examples in [3].
• I've found myself on that website many times, he has a lot of
excellent examples about a large quantity of topics.

10

Example: Resource Monitoring

• Now I have opened about thirty tabs in firefox, and we get
much different results:

• Look at the cpu usage!

>>> top -p 12795
top - 09:43:09 up 1 day, 13:57, 5 users, load average: 1.33, 0.75, 0.41
Tasks: 1 total, 1 running, 0 sleeping, 0 stopped, 0 zombie
%Cpu(s): 13.4 us, 3.3 sy, 0.0 ni, 83.2 id, 0.0 wa, 0.0 hi, 0.0 si, 0.0 st
KiB Mem : 16386660 total, 3622768 free, 5679500 used, 7084392 buff/cache
KiB Swap: 4194300 total, 4194300 free, 0 used. 10300816 avail Mem
PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND

12975 sven 20 0 3451396 1.372g 133688 R 75.7 8.8 5:00.96 firefox

• 75.7%?!!! Pretty common actually, this is why I always tell you to
use your browser inside your Virtual Machine...

11

Modifying Processes

Priority

• Suppose you want to run some long calculation that might
take days, but would consume 100% of your CPU.

• Can we tell the server to give your process less priority in
terms of CPU time?

• Recall that although Unix seems to run tens or hundreds of
processes at once, one CPE can only run one process at a
time*.

• Quick switching back and forth between processes makes it
seem as though they are all running simultaneously.

• The Unix masters anticipated this need, and each process was
given a priority when it starts.

13

Initial Priority

Start a process with a non-default priority:

The nice command
nice [options] command
- Runs command with a specified "niceness" value (default: 10).
- Niceness values range from -20 (highest priority) to 19
(lowest priority).

- Only root can give a process a negative niceness value.
- Commands run without nice have priority 0.

Example
nice -n 10 deluge
• Keeps torrents from hogging the CPU.

14

Adjusting Priority

The renice command
renice <priority> -p <PID>
- Changes the niceness of the process with id PID to
<priority>.

- Remember: only root can assign negative values.
- You can only renice a process you started.

Some Examples
renice 5 -p 10275
• Set the niceness of the process with PID 10275 to 5

• Slightly lower than normal niceness

renice 19 -u sven
• Set the niceness of all my processes to 19

15

Ending Processes: I

Sometimes you need to end a process.

kill
kill [-signal] <PID>
- Sends the specified signal to the process with id PID.
- By default, it terminates execution.

killall
killall [-signal] <name>
- Kills processes by name.
- E.g. killall firefox.

Note: These are dangerous commands, and should generally
be last resorts.

16

Useful Kill Signals

• Kill signals can be used by number or name.
• TERM or 15: terminates execution (default).
• HUP or 1: hang-up (restarts the program).
• KILL or 9: like bleach, can kill anything.
• Some examples:

Killing 101
kill 9009: terminates process with PID 9009.

kill -9 3223: REALLY kills the process with PID 3223.

kill -HUP 12221: restarts the process with PID 12221.
• very useful for servers and daemon processes.

• Remember top? You can both renice and kill processes from
within it! 17

Jobs

What are Jobs?

Jobs
A job is a process running under the influence of a job control
facility.
- Job control is a built-in feature of most shells, allowing the
user to pause and resume tasks.

- The user can also run them in the background.
- Not covered here: crontab. For the future sys admins, read
the article in [2].

19

Why do you want this?

Let's use ping as an example.

Ping
ping <server>
- Measures network response time (latency) to a remote
server and back.

- Sends short bursts to the server, then measures time until
they return.

Example:
ping google.com
• Remember, ctrl+c kills the process.

20

Why we Need Job Control

As long as ping runs, we lose control of our shell. This
happens with many other applications.

• Moving large quantities of files.
• Compiling source code.
• Playing multimedia.
• Scientific computing.
• etc.

Example:
vlc

21

Starting a Job in the Background

To run a job in the background, we will use a new operator:

&
<command> [arguments] &
- Runs the specified command as a background job.
- Unless told otherwise, will send output to the terminal!
- But at least we can type in our terminal again.

Example:
vlc best_song_ever.flac &

22

Sending a Job to the Background

If you already started the job, but don't want to wait any more:

Pausing a Job
Press ctrl+z to pause a running process!

• Note this is still ctrl even on Mac...just like ctrl+c.
• The shell will pause the jobs JOB ID (similar to PID).
• We can bring it back.

23

Revivals

Background
bg <JOB ID>
- Resumes the job with id JOB ID in the background.
- Without JOB ID, resumes last job placed in background.

Foreground
fg <JOB ID>
- Resumes the job with id JOB ID in the foreground.
- Without JOB ID, resumes last job placed in background.

Discovering your jobs
jobs
- Prints the running, paused, or recently stopped jobs.
- Prints jobs with their JOB IDs.

24

Dealing with Excess Output

• Many programs output continuously as they run. Try vlc.
Pretty, but also annoying.

• Redirect the output!
• Saving the output:

Save ping results
ping google.com > testping.log &
• A .log file is common.
• Note you need to eventually end this ping!

• Ignoring the output:

Should work in most Linux. Warning: non-POSIX compliant.
>>> vlc best_song_ever.flac &> /dev/null & # bash 4.0+
BSD/OSX/way out of date Linux:
>>> vlc best_song_ever.flac > /dev/null 2>&1 & # before 4.0 25

Detaching Jobs

When you launch jobs with an & and then close your terminal,
those jobs will end.
No Hangup
nohup <command> [args]
- Launches command so it will not end with SIGHUP signals.
- E.g. nohup vlc best_song_ever.flac > /dev/null 2>&1 &
- Now we do not lose vlc when we close our terminal.

If you have already launched the job, you can still save it.

Disown a Job
disown [flags] jobspec
- The -h flag prevents jobspec from SIGHUP killing it.
- The jobspec is the job number (e.g. run jobs).
- E.g. if jobID 1 is vlc, then disown -h %1 will work. 26

Job Control Demo

Controlling Jobs

I did a demo on-the-fly in class demonstrating job control,
pausing, resuming, etc. I encourage you to follow the ex post
facto demo here:

https://github.com/cs2043-sp16/lecture-
demos/tree/master/lec07

28

https://github.com/cs2043-sp16/lecture-demos/tree/master/lec07
https://github.com/cs2043-sp16/lecture-demos/tree/master/lec07

References

[1] B. Abrahao, H. Abu-Libdeh, N. Savva, D. Slater, and others
over the years.
Previous cornell cs 2043 course slides.

[2] C. Hope.
Linux and unix crontab command help and examples.
http:
//www.computerhope.com/unix/ucrontab.htm.

[3] R. Natarajan.
Can you top this? 15 practical linux top command
examples.
http://www.thegeekstuff.com/2010/01/
15-practical-unix-linux-top-command-examples/.

29

http://www.computerhope.com/unix/ucrontab.htm
http://www.computerhope.com/unix/ucrontab.htm
http://www.thegeekstuff.com/2010/01/15-practical-unix-linux-top-command-examples/
http://www.thegeekstuff.com/2010/01/15-practical-unix-linux-top-command-examples/

	Processes Overview
	Modifying Processes
	Jobs
	Job Control Demo

