
05 - Expansions and Regular Expressions
CS 2043: Unix Tools and Scripting, Spring 2016 [1]

Stephen McDowell
February 5th, 2016

Cornell University

Table of contents

1. Shell Expansion

2. Sets, Regular Expressions, and Usage

3. More Git

2

Some Logistics

• The assignments repository on GitHub.
• Course pacing...
• HW1 tonight.

3

Shell Expansion

Wildcards

There are various special characters you have access too in
your shell to expand phrases to match patterns, such as *, ?,
ˆ, {, }, [,].

• Any string.
• A single character.
• A phrase.
• A restricted set of characters.

5

Shell Expansion: Example

• The * matches any string, including the null string (e.g. 0 or
more characters).

Input Matched Not Matched
Lec* Lecture1.pdf Lec.avi AlecBaldwin/
L*ure* Lecture2.pdf Lectures/ sure.txt
*.tex Lecture1.tex Presentation.tex tex/

6

Shell Expansion: Example

• The ? matches a single character.

Input Matched Not Matched
Lec?.pdf Lec1.pdf Lec2.pdf Lec11.pdf
ca? cat can cap ca cake

7

Shell Expansion: Example

• Brace enumerations [...] match any character inside the
square brackets.

• Use a dash to indicate a range of characters.
• Can put commas between characters / ranges.

Input Matched Not Matched
[SL]ec* Lecture Section Vector.tex
Day[1-3] Day1 Day2 Day3 Day5
[A-Z,a-z][0-9].mp3 A9.mp3 z4.mp3 Bz2.mp3 9a.mp3

8

Shell Expansion: Example

• The ˆ character is represents not.
• E.g. [ˆ...] matches any character not inside the square
brackets.

Input Matched Not Matched
[ˆA-P]ec* Section.pdf Lecture.pdf
[ˆA-Za-z]* 9Days.avi vacation.jpg

9

Shell Expansion: Example

• Brace Expansion: {...,...} matches any phrase inside the
comma-separated braces.

• Suports ranges as well!
• Brace expansion needs at least two options to choose from.

Input Matched
{Hello,Goodbye}\World Hello World Goodbye World
{Hi,Bye,Cruel}\World Hi World By World Cruel World
{a..t} Expands to the range a ... t
{1..99} Expands to the range 1 ... 99

Note: NO SPACES. We haven't covered loops yet...but this is
most useful when you want to do something like

• for x in 1..99; do echo $x; done
10

Combining Them

Of course, you can combine all of these!

Input Matched Not Matched
h[0-9] h3 h3llo.txt hello.txt
[bf][ao][row].mp? bar.mp3 foo.mpg foo.mpeg

11

Interpreting Special Characters

The special characters are

$ * < > & ? { } []

• The shell interprets them in a special way unless we
escape them (\$), or place them in quotes ("$").

• When we first invoke a command, the shell first translates
it from a string of characters to a Unix command that it
understands.

• A shell's ability to interpret and expand commands is one
of the powers of shell scripting.

• These will become your friends, and we'll see them again...

12

Sets, Regular Expressions, and Usage

tr Revisited

The tr does not understand regular expressions per se (and
really for the task it is designed for they don't make sense),
but it does understand ranges and POSIX character sets:

Useful Sets

[:alnum:] alphanumeric characters
[:alpha:] alphabetic characters
[:digit:] digits
[:punct:] punctuation characters
[:lower:] lowercase letters
[:upper:] uppercase letters
[:space:] whitespace characters

14

If you Leave this Class with Anything...

Quite possibly the two most common things anybody uses in a
terminal:

• find: searching for files / directories by name or
attributes.

• grep: search contents of files.
• Used in conjunction with expansions, sets, and regular
expressions.

15

Finding Yourself

find
find [where to look] criteria [what to do]
- Used to locate files or directories.
- Search any set of directories for files that match a criteria.
- Search by name, owner, group, type, permissions, last
modification date, and more.

- Search is recursive (will search all subdirectories too).
- Sometimes you may need to limit the depth.

16

Some Find Options

-name: name of file or directory to look for.
-maxdepth num: search at most num levels of directories.
-mindepth num: search at least num levels of directories.
-amin n: file last access was n minutes ago.
-atime n: file last access was n days ago.
-group name: file belongs to group name.
-path pattern: file name matches shell pattern pattern.
-perm mode: file permission bits are set to mode.

Of course...a lot more in man find.

17

Some Details

• This command is extremely powerful...but can be a little
verbose. That's normal.

• Normally all modifiers for find are evalulated in conjunction
(a.k.a AND). You can condition your arguments with an OR by
passing the -o flag for each modifier you want to be an OR.

• You can execute a command on found files / directories by
using the -exec modifier, and find will execute the
command for you.

• The variable name is {}.
• You have to end the command with either a

• ; to execute the command on each individual result as you find
them.

• + to execute on all results once at the end.
• Note: You have usually to escape them, e.g. \; and \+

18

Some Examples

Find all files accessed at most 10 minutes ago
find . -amin -10

Find all files accessed at least 10 minutes ago
find . -amin +10

Display all the contents of files accessed in the last 10 minutes
find . -amin -10 -exec cat +

Accidentally did git add on a Mac and ended up with
.DS_Store Everywhere?
find . -name .DS_Store -exec git rm -rf

19

Time for the Magic

Globally Search a Regular Expression and Print
grep <pattern> [input]
- Searches input for all lines containing pattern.
- As easy as specifying a string you need to find in a file.
- Or it can be much more.
- Common:

<some_command> | grep <thing you need to find>

Understanding how to use grep is really going to save you a
lot of time in the future!

20

Grep Options

-i: ignores case.
-A 20 -B 10: print 10 lines before, and 20 lines after each
match.
-v: inverts the match.
-o: shows only the matched substring.
-n: displays the line number.
-H: print the filename.
--exclude <glob>: ignore glob e.g. --exclude *.o
-r: recursive, search subdirectories too.

• Note: you're Unix version may differentiate between -r and -R,
check the man page. We'll cover what that means soon.

21

Regular Expressions

• grep, like many programs, takes in a regular expression as its
input. Pattern matching with regular expressions is more
sophisticated than shell expansions, and also uses different
syntax.

• More precisely, a regular expression is a set of strings - these
strings match the specified expression.

• When we use regular expressions, it is (usually) best to
enclose them in quotes to stop the shell from expanding it
before passing it to grep / other tools.

22

Regular Expression Notes

Some regex patterns perform the same tasks as the
wildcards we learned:
Single Characters
Wild card: ? Regex: .
• Matches any single character.

Wild card: [a-z] Regex: [a-z]
• Matches one of the indicated characters.
• Don't separate multiple characters with commas in the
regex form (e.g. [a,b,q-v] becomes [abq-v]).

A Simple Example
grep 't.a' - prints lines like tea, taa, and steap.

23

A Note on Ranges

• Like shell wildcards, regexs are case-sensitive. What if you
want to match any letter, regardless of case?

• If you take a look at the ASCII codes I keep mentioning in [2],
you will see that the lower case letters come after the upper
case letters.

• You should be careful about trying to do something like [a-Z].
• Instead, just do [a-zA-Z].
• Note: some programs very well could accept the range [a-Z]
correctly.

24

Workarounds

• grep accepts the POSIX sets we learned earlier!
• e.g. ls | grep [[:digit:]] gives all files with numbers in
the filename.

• * matches 0 or more occurences of the expression.
• \? matches 0 or 1 occurences of the expression.
• \+ matches 1 or more occurences of the expression.
• Remember that you can flip the expressions with the not
signal: ˆ

• The $ can be used to match the end of the line.

25

To be continued...

There's a lot more going on here. We'll come back to it soon!

26

More Git

Syncing a Fork...

...again!

28

References I

[1] B. Abrahao, H. Abu-Libdeh, N. Savva, D. Slater, and others
over the years.
Previous cornell cs 2043 course slides.

[2] A. Table.
Ascii character codes and html, octal, hex, and decimal
chart conversion.
http://www.asciitable.com/.

29

http://www.asciitable.com/

	Shell Expansion
	Sets, Regular Expressions, and Usage
	More Git

