
04 - More Files, Chaining Commands, and your
First(?) Git Repository
CS 2043: Unix Tools and Scripting, Spring 2016 [1]

Stephen McDowell
February 3rd, 2016

Cornell University

Table of contents

1. Recap on Permissions

2. File Compression

3. Assorted Commands

4. Chaining Commands

5. More Git: Forking a Repository

2

Some Logistics

• Last day to add is today.
• (Poll) The demo last time.

3

Recap on Permissions

The Octal Version of chmod

Last time I linked you to this[2] website for a good explanation.
For the formula hungry, you can represent r, w, and x as binary
variables (where 0 is off, and 1 is on). Then the formula for the
modes is

r · 22 + w · 21 + x · 20

Examples
• chmod 755: rwxr-xr-x
• chmod 777: rwxrwxrwx
• chmod 600: rw-------

If that makes less sense to you, feel free to ignore it.

5

Super Confused...

Superuser Do
sudo <command>
- Execute <command> as the super user.
- The regular user (e.g. student) is executing the sudo
command, not the root.

- You enter your user password.
- You can only execute sudo if you are an "administrator"*.

• On the course VMs the student user originally had the
password student, so that is what you would type if you were
executing sudo.

• On your personal Mac (or native Linux install), you would be
typing whatever your password is to login to the computer.
*Note that where you look to see who can execute sudo varies greatly between distributions. 6

Super Confused...

If you know the root password, then you can become root
using su directly.

Switch User
su <user_name>
- Switches to user user_name.
- The password you enter is the password for user_name.
- If no username is specified, root is implied.

• The commands sudo su root and sudo su are
equivalent:

• Since you typed sudo first, that is why you type the user
password.

• If you just execute su directly, then you have to type the
root password. 7

Default Permissions

When you create files during a particular session, the mode
you are running in determines what the permissions will be.

User mask
umask <mode>
- Remove mode from the file's permissions.
- Similar syntax to chmod:
- umask 077: full access to the user, no access to anybody else.
- umask g+w: enables group write permissions.

- umask -S: display the current mask.

• Changing the umask only applies for the remainder of the
session (e.g. until you close the terminal window you were
writing this in).

• If this has meaning, it is just a bit mask with 0o777. 8

File Compression

Making Archives: Zip

Zip
zip <name_of_archive> <files_to_include>
- Note I said files.
- E.g. zip files.zip a.txt b.txt c.txt
- These will extract to a.txt, b.txt, and c.txt in the current
directory.

- To do folders, you need recursion.
- zip -r folder.zip my_files/
- This will extract to a folder named my_files, with whatever
was inside of it in tact.

Unzip
unzip <archive_name>

Note: The original files DO stay in tact. 10

Making Archives: Gzip

Gzip
gzip <files_to_compress>
- Less time to compress, larger file: --fast
- More time to compress, smaller file: --best
- Read the man page, lots of options.

Gunzip
gunzip <archive_name>

Notes:

• By default, replaces the original files!
• You can use --keep to bypass this.

• Does not bundle the files.
• Usually has better compression than zip. 11

Making Archives: Tar

Tape Archive
tar -cf <tar_archive_name> <files_to_compress>
- Create a tar archive.
tar -xf <tar_archive_name>
- Extract all files from archive.

Notes:

• tar is just a bundling suite, creating a single file.
• By default, it does not compress.
• Original files DO stay in tact.
• Unlike zip, you do not need the -r flag for folders :)

12

Making Archives: Tarballs

Making tarballs
tar -c(z/j)f <archive_name> <source_files>
tar -x(z/j)f <archive_name>
- (z/j) here means either z or j, not both.
- The -z flag specifies gzip as the compression method.
- YOU have to specify the file extension.
- Extension convention: .tar.gz
- Example: tar -cjf files.tar.gz files/

- The -j flag specifies bzip2 as the compression method.
- Extension convention: .tar.bz2
- Example: tar -cjf files.tar.bz2 files/

Note:
• Extraction can usually happen automatically:

• tar -xf files.tar.gz will usually work (no -z) 13

Assorted Commands

Before we can Chain...

...we need some more interesting tools to chain together!

15

Counting

Word Count
wc [options] <file>
-l: count the number of lines.
-w: count the number of words.
-m: count the number of characters.
-c: count the number of bytes.

Great for things like:

• revelling in the number of lines you have programmed.
• analyzing the verbosity of your personal statement.
• showing people how cool you are.

16

Sorting

Sort
sort [options] <file>
- Default: sort by the ASCII code (roughly alphabetical) for
the whole line.

- Use -r to reverse the order.
- Use -n to sort by numerical order.
- Use -u to remove duplicates.

>>> cat peeps.txt
Manson, Charles
Bundy, Ted
Bundy, Jed
Nevs, Sven
Nevs, Sven

>>> sort -r peeps.txt
Nevs, Sven
Nevs, Sven
Manson, Charles
Bundy, Ted
Bundy, Jed

>>> sort -ru peeps.txt
Nevs, Sven
Manson, Charles
Bundy, Ted
Bundy, Jed
only 1 Nevs, Sven

17

Advanced Sorting

• The sort command is quite powerful, for example you can do:

>>> sort -n -k 2 -t "," <filename>

• Sorts the file numerically by using the second column,
separating by a comma as the delimiter instead of a space.

• Read the man page!

>>> cat numbers.txt
02,there
04,how
01,hi
06,you
03,bob
05,are

>>> sort -n -k 2 -t "," numbers.txt
01,hi
02,there
03,bob
04,how
05,are
06,you

18

Special Snowflakes

Unique
uniq [options] <file>
- No flags: discards all but one of successive identical lines.
- Use -c to prints the number of successive identical lines
next to each line.

19

Search and Replace

Translate
tr [options] <set1> [set2]
- Translate or delete characters.
- Sets are strings of characters.
- By default, searches for strings matching set1 and replaces
them with set2.

- You can use POSIX and custom-defined sets (we'll get there
soon!).

• The tr command only works with streams.
• Examples to come after we learn about chaining
commands in the next section.

20

Chaining Commands

Your Environment and Variables

• There are various environment variables defined in your
environment. They are almost always all capital letters.

• You obtain their value by dereferencing them with a $.

>>> echo $PWD # present working directory
>>> echo $OLDPWD # print previous working directory
>>> printenv # print all environment variables

• When you execute commands, they have something called an
"exit code".

• The exit code of the last command executed is stored in the $?
environment variable.

22

What is Defined?

• The environment:
• env: displays all environment variables.
• unsetenv <name>: remove an environment variable.

• The local variables:
• set: displays all shell / local variables.
• unset <name>: remove a shell variable.

• We'll cover these a little more when we talk about customizing
your terminal shell.

23

Exit Codes

• There are various exit codes, here are a few examples:

>>> super_awesome_command
bash: super_awesome_command: command not found...
>>> echo $?
127
>>> echo "What is the exit code we want?"
>>> echo $?
0

• The success code we want is actually 0. Refer to [3] for some
more examples.

• Remember that cat /dev/urandom trickery? You will have to
ctrl+c to kill it, what would the exit code be?

24

Executing Multiple Commands in a Row

With exit codes, we can define some simple rules to chain
commands together:

• Always execute:

>>> cmd1; cmd2 # exec cmd1 first, then cmd2

• Execute conditioned upon exit code:

>>> cmd1 && cmd2 # exec cmd2 only if cmd1 returned 0
>>> cmd1 || cmd2 # exec cmd2 only if cmd1 returned NOT 0

• Kind of backwards, in terms of what means continue for
and, but that was likely easier to implement since there is
only one 0 and many not 0's.

25

Piping Commands

Bash scripting is all about combining simple commands
together to do more powerful things. This is accomplished
using the "pipe" character.

Piping
<command1> | <command2>
- Passes the output from command1 to be the input of
command2.

- Works for heaps of programs that take input and provide
output to the terminal.

26

Some Piping Examples

Piping along...
>>> ls -al /bin | less
- Allows you to scroll through the long list of programs in /bin
>>> history | tail -20 | head -10
- Displays the 10th - 19th previous commands from the
previous session.

>>> echo * | tr ' ' '\n'
- Replaces all spaces characters with new lines.
- Execute just echo * to see the difference.

27

Redirection

To redirect input / output streams, you can use one of >, >>, <,
or <<.

• To redirect standard output, use the > operator.
• command > file

• To redirect standard input, use the < operator.
• command < file

• To redirect standard error, use the > operator and specify
the stream number 2.

• command 2> file
• Combine streams together by using 2>&1 syntax.

• This says: send standard error to where standard output is
going.

• Useful for debugging / catching error messages...
• ...or ignoring them (you will often see that sent to
/dev/null).

28

Redirection Example

• Bash processes I/O redirection from left to right, allowing us to
do fun things like this:

Magic
tr -cd '0-9' < test1.txt > test2.txt

- Deletes everything but the numbers from test1.txt, then store
them in test2.txt.

- CAUTION: do not ever use the same file as output that was input.

- Example: tr -cd '0-9' < original.txt > original.txt
- You will lose all your data, you cannot read and write this way.

• Piping and Redirection are quite sophisticated, please refer to
the Wikipedia page in [4].

29

More Git: Forking a Repository

In class demo...

https://github.com/cs2043-sp16/lecture-
demos/tree/master/lec04

31

https://github.com/cs2043-sp16/lecture-demos/tree/master/lec04
https://github.com/cs2043-sp16/lecture-demos/tree/master/lec04

References I

[1] B. Abrahao, H. Abu-Libdeh, N. Savva, D. Slater, and others
over the years.
Previous cornell cs 2043 course slides.

[2] C. Hope.
Linux and unix chmod command help and examples.
http://www.computerhope.com/unix/uchmod.htm,
2016.

[3] T. L. D. Project.
Exit codes with special meanings.
http://tldp.org/LDP/abs/html/exitcodes.html.

32

http://www.computerhope.com/unix/uchmod.htm
http://tldp.org/LDP/abs/html/exitcodes.html

References II

[4] Wikipedia.
Redirection (computing).
https://en.wikipedia.org/wiki/Redirection_
%28computing%29.

33

https://en.wikipedia.org/wiki/Redirection_%28computing%29
https://en.wikipedia.org/wiki/Redirection_%28computing%29

	Recap on Permissions
	File Compression
	Assorted Commands
	Chaining Commands
	More Git: Forking a Repository

