04 - More Files, Chaining Commands, and your
First(?) Git Repository

CS 2043: Unix Tools and Scripting, Spring 2016 [1]

Stephen McDowell
February 3rd, 2016

Cornell University

Table of contents

1. Recap on Permissions
2. File Compression

3. Assorted Commands

4. Chaining Commands

5. More Git: Forking a Repository

Some Logistics

- Last day to add is today.
- (Poll) The demo last time.

Recap on Permissions

The Octal Version of chmod

Last time | linked you to this[2] website for a good explanation.
For the formula hungry, you can represent r, w, and X as binary
variables (where 0 is off, and 1is on). Then the formula for the
modes is

r-224+w-2"+x-2°

Examples
chmod 755: rwxr-xr-x

- chmod 777: rwxrwxrwx
- chmod 600: rw-------

If that makes less sense to you, feel free to ignore it.

Super Confused...

uperuser

sudo <command>

- Execute <command> as the super user.

- The regular user (e.g. student) is executing the sudo
command, not the root.

- You enter your user password.
You can only execute sudo if you are an "administrator"”.

- On the course VMs the student user originally had the
password student, so that is what you would type if you were
executing sudo.

- On your personal Mac (or native Linux install), you would be
typing whatever your password is to login to the computer.

“Note that where you look to see who can execute sudo varies greatly between distributions.

Super Confused...

If you know the root password, then you can become root
using su directly.

SU <user_name>

- Switches to user user name.
- The password you enter is the password for user_name.

- If no username is specified, root is implied.

- The commands sudo su root and sudo su are

equivalent:
- Since you typed sudo first, that is why you type the user

password.
- If you just execute su directly, then you have to type the
root password. 7

Default Permissions

When you create files during a particular session, the mode
you are running in determines what the permissions will be.

ser
umask <mode>

- Remove mode from the file's permissions.

- Similar syntax to chmod:
- umask 077: full access to the user, no access to anybody else.
- umask g+w: enables group write permissions.

- umask -S:display the current mask.

- Changing the umask only applies for the remainder of the
session (e.g. until you close the terminal window you were
writing this in).

- If this has meaning, it is just a bit mask with 00777. 8

File Compression

Making Archives: Zip

zip <name of archive> <files to include>
- Note | said files.

- Eg zip files.zip a.txt b.txt c.txt
- These will extract to a.txt, b.txt, and c.txt in the current
directory.

- To do folders, you need recursion.

- zip -r folder.zip my files/
- This will extract to a folder named my files, with whatever
was inside of it in tact.

unzip <archive name>

Note: The original files DO stay in tact. 10

Making Archives: Gzip

gzip <files to compress>

- Less time to compress, larger file: - -fast
- More time to compress, smaller file: - -best

- Read the man page, lots of options.

gunzip <archive name>

Notes:

- By default, replaces the original files!
- You can use - -keep to bypass this.

- Does not bundle the files.
- Usually has better compression than zip.

Making Archives: Tar

ape Archive

tar -cf <tar archive name> <files to compress>
- Create a tar archive.

tar -xf <tar_archive name>

- Extract all files from archive.

Notes:

- tarisjust a bundling suite, creating a single file.
- By default, it does not compress.
- Original files DO stay in tact.

- Unlike zip, you do not need the -r flag for folders :)

Making Archives: Tarballs

Making tarballs

tar -c(z/j)f <archive name> <source files>
tar -x(z/j)f <archive name>

- (z/j) here means either z or j, not both.

- The -z flag specifies gzip as the compression method.
- YOU have to specify the file extension.

- Extension convention: .tar.gz

- Example: tar -cjf files.tar.gz files/
- The -j flag specifies bzip2 as the compression method.

- Extension convention: .tar.bz2
- Example: tar -cjf files.tar.bz2 files/

Note:
- Extraction can usually happen automatically:
- tar -xf files.tar.gz will usually work (no -z) 13

Assorted Commands

Before we can Chain...

..we need some more interesting tools to chain together!

15

Counting

wc [options] <file>

-1: count the number of lines.
-w: count the number of words.
-m: count the number of characters.

- C: count the number of bytes.

Great for things like:

- revelling in the number of lines you have programmed.
- analyzing the verbosity of your personal statement.
- showing people how cool you are.

Sorting

sort [options] <file>

- Default: sort by the ASCII code (roughly alphabetical) for
the whole line.

Use -r to reverse the order.

Use -n to sort by numerical order.

Use -u to remove duplicates.

>>> cat peeps.txt >>> sort -r peeps.txt >>> sort -ru peeps.txt
Manson, Charles Nevs, Sven Nevs, Sven

Bundy, Ted Nevs, Sven Manson, Charles

Bundy, Jed Manson, Charles Bundy, Ted

Nevs, Sven Bundy, Ted Bundy, Jed

Nevs, Sven Bundy, Jed # only 1 Nevs, Sven

Advanced Sorting

- The sort command is quite powerful, for example you can do:
>>> sort -n -k 2 -t "," <filename>

- Sorts the file numerically by using the second column,
separating by a comma as the delimiter instead of a space.

- Read the man page!

>>> cat numbers.txt >>> sort -n -k 2 -t "," numbers.txt
02, there 01,hi

04, how 02,there

01,hi 03, bob

06,you 04, how

03, bob 05,are

05,are 06,you

Special Snowflakes

uniq [options] <file>

- No flags: discards all but one of successive identical lines.

- Use -c to prints the number of successive identical lines
next to each line.

Search and Replace

tr [options] <setl> [set2]

Translate or delete characters.

Sets are strings of characters.

By default, searches for strings matching setl and replaces
them with set2.

You can use POSIX and custom-defined sets (we'll get there
soon!).

- The tr command only works with streams.

- Examples to come after we learn about chaining
commands in the next section.

Chaining Commands

Your Environment and Variables

- There are various environment variables defined in your
environment. They are almost always all capital letters.

- You obtain their value by dereferencing them with a $.

>>> echo $PWD # present working directory
>>> echo $0LDPWD # print previous working directory
>>> printenv # print all environment variables

- When you execute commands, they have something called an
"exit code".

- The exit code of the last command executed is stored in the $?
environment variable.

22

What is Defined?

- The environment:
- env: displays all environment variables.
- unsetenv <name>: remove an environment variable.
- The local variables:
- set: displays all shell / local variables.
- unset <name>: remove a shell variable.
- We'll cover these a little more when we talk about customizing
your terminal shell.

23

Exit Codes

- There are various exit codes, here are a few examples:

>>> super awesome command

bash: super awesome command: command not found...
>>> echo $7?

127

>>> echo "What is the exit code we want?"
>>> echo $?
0

- The success code we want is actually 0. Refer to [3] for some
more examples.

- Remember that cat /dev/urandom trickery? You will have to
ctrl+c to kill it, what would the exit code be?

24

Executing Multiple Commands in a Row

With exit codes, we can define some simple rules to chain
commands together:

- Always execute:

>>> cmdl; cmd?2 # exec cmdl first, then cmd?2

- Execute conditioned upon exit code:

>>> cmdl && cmd2 # exec cmd2 only if cmdl returned 0
>>> cmdl || cmd2 # exec cmd2 only if cmdl returned NOT O

- Kind of backwards, in terms of what means continue for
and, but that was likely easier to implement since there is
only one 0 and many not 0's.

25

Piping Commands

Bash scripting is all about combining simple commands
together to do more powerful things. This is accomplished
using the "pipe" character.

Piping

<commandl> | <command2>

- Passes the output from commandl to be the input of
command?2.

- Works for heaps of programs that take input and provide
output to the terminal.

Some Piping Examples

Piping along...
>>> 1ls -al /bin | less

- Allows you to scroll through the long list of programs in /bin
>>> history | tail -20 | head -10

- Displays the 10t - 19t previous commands from the
previous session.

>>> echo * | tr ' ' '\n'
- Replaces all spaces characters with new lines.
- Execute just echo * to see the difference.

To redirect input / output streams, you can use one of >, >>, <,
or <<.

- To redirect standard output, use the > operator.
- command > file
- To redirect standard input, use the < operator.
- command < file
- To redirect standard error, use the > operator and specify
the stream number 2.
- command 2> file
- Combine streams together by using 2>&1 syntax.
- This says: send standard error to where standard output is
going.
- Useful for debugging / catching error messages...
- ..or ignoring them (you will often see that sent to

/dev/null).
28

Redirection Example

- Bash processes 1/0 redirection from left to right, allowing us to
do fun things like this:

Magic

tr -cd '0-9' < testl.txt > test2.txt

- Deletes everything but the numbers from testl. txt, then store
them in test2.txt.

- CAUTION: do not ever use the same file as output that was input.

- Example: tr -cd '0-9' < original.txt > original.txt
- You will lose all your data, you cannot read and write this way.

- Piping and Redirection are quite sophisticated, please refer to
the Wikipedia page in [4].

More Git: Forking a Repository

In class demo...

https://github.com/cs2043-sp16/lecture-
demos/tree/master/lecO4

31

https://github.com/cs2043-sp16/lecture-demos/tree/master/lec04
https://github.com/cs2043-sp16/lecture-demos/tree/master/lec04

References |

[1] B. Abrahao, H. Abu-Libdeh, N. Savva, D. Slater, and others
over the years.
Previous cornell cs 2043 course slides.

[2] C. Hope.
Linux and unix chmod command help and examples.
http://www.computerhope.com/unix/uchmod.htm,
2016.

[3] T. L. D. Project.
Exit codes with special meanings.
http://tldp.org/LDP/abs/html/exitcodes.html.

32

http://www.computerhope.com/unix/uchmod.htm
http://tldp.org/LDP/abs/html/exitcodes.html

References Il

[4] Wikipedia.
Redirection (computing).
https://en.wikipedia.org/wiki/Redirection
%28computing%29.

33

https://en.wikipedia.org/wiki/Redirection_%28computing%29
https://en.wikipedia.org/wiki/Redirection_%28computing%29

	Recap on Permissions
	File Compression
	Assorted Commands
	Chaining Commands
	More Git: Forking a Repository

