
03 - Manipulating Files and Using Git
CS 2043: Unix Tools and Scripting, Spring 2016 [1]

Stephen McDowell
February 1st, 2016

Cornell University



Table of contents

1. Working with Files

2. Types of Files and Usages

3. Let's Git Started

4. Demo Time!

2



Some Logistics

• Last day to add is Wednesday 2/3.
• HW0: Due today at 5pm.
• My OH are Tuesdays 6:00pm - 7:00pm, Gates G19.
• On moving forward independently, and using sudo.

• I strongly advise taking a snapshot of your VM.

• A note about HW1...

3



Working with Files



Users and Groups

Like most OS's, Unix allows multiple people to use the same
machine at once. The question: who has access to what?

• Access to files depends on the users' account.
• All accounts are presided over by the Superuser, or root
account.

• Each user has absolute control over any files they own,
which can only be superseded by root.

• Files can also be owned by a group, allowing more users
to have access.

5



File Ownership

You can discern who owns a file many ways, the most
immediate being ls -l

Permissions with ls
>>> ls -l Makefile
-rw-rw-r--. 1 sven users 4.9K Jan 31 04:42 Makefile

sven # the user
users # the group

The third column is the user, and the fourth column is the
group.

6



What is this RWX Nonsense?

• R = read, W = write, X = execute.
• rwxrwxrwx

• User permissions.
• Group permissions.
• Other permissions (a.k.a. neither the owner, nor a member of
the group).

• Directory permissions begin with a d instead of a -.

7



An example

What would the permissions -rwxr----- mean?

• It is a file.
• User can read and write to the file, as well as execute it.
• Group members are allowed to read the file, but cannot write to
or execute.

• Other cannot do anything with it.

8



Changing Permissions

Change Mode
chmod <mode> <file>
- Changes file / directory permissions to <mode>.
- The format of <mode> is a combination of three fields:
- Who is affected: a combination of u, g, o, or a (all).
- Use a + to add permissions, and a - to remove.
- Specify type of permission: any combination of r, w, x.

- Or you can specify mode in octal: user, then group, then
other.
- e.g. 777 means user=7, group=7, other=7 permissions.

The octal version can be confusing, but will save you time.
Excellent resource in [2].

9



Changing Ownership

Changing the group

Change Group
chgrp group <file>
- Changes the group ownership of <file> to group.

As the super user, you can change who owns a file:

Change Ownership
chown user:group <file>
- Changes the ownership of <file>.
- The group is optional.
- The -R flag is useful for recursively modifying everything in a
directory.

10



File Ownership, Alternate

If you are like me, you often forget which column is which in
ls -l...
Status of a file or filesystem
stat [opts] <filename>
- Gives you a wealth of information, generally more than you
will every actually need.

- Uid is the user, Gid is the group.
- BSD/OSX: use stat -x for standard display of this command.

- Can be useful if you want to mimic file permissions you don't
know.
- Human readable: --format=%A, e.g. -rw-rw-r--
- BSD/OSX: -f %Sp is used instead.

- Octal: --format=%a (great for chmod), e.g. 664
- BSD/OSX: -f %A is used instead. 11



Platform Notes

• Convenience flag for chown and chmod on non-BSD Unix:

>>> chmod --reference=<src> <dest>

• Set the permissions of dest to the permissions of src!
• BSD/OSX users: --reference does not exist, you will have to
execute two commands.

>>> chmod `stat -f %A <src>` <dest>

• The stat command inside of the `backticks` gets
evaluated before chmod does.

• The stat command performs a little differently on BSD/OSX
by default. Read the man page.

12



Types of Files and Usages



Plain Files

Plain text files are human-readable, and are usually used for
things like:

• Documentation,
• Application settings,
• Source code,
• Logs, and
• Anything you may want to read via the terminal (e.g.
README.txt).

14



Binary Files

Binary files are not human-readable. They are written in the
language your computer prefers.

• Executables,
• Libraries,
• Media files,
• Archives (.zip, etc), and many more.

15



Reading Files Without Opening

Concatenate
cat <filename>
- Prints the contents of the file to the terminal window
cat <file1> <file2>
- Prints file1 first, then file2.
more
more <filename>
- Scroll through one page at a time.
- Program exits when end is reached.

less
less <filename>
- Scroll pages or lines (mouse wheel, space bar, and arrows).
- Program does not exit when end is reached. 16



Beginning and End

Long files can be a pain with the previous tools.

Head and Tail of Input
head -[numlines] <filename>
tail -[numlines] <filename>
- Prints the first / last numlines of the file.
- Default is 10 lines.

17



Not Really a File...YET

You can talk to yourself in the terminal too!

Echo
echo <text>
- Prints the input string to the standard output (the terminal).
- We will soon learn how to use echo to put things into files,
append to files, etc.

18



Let's Git Started



Another Brief Git Demo

If you are not at lecture, don't worry about this slide not
making any sense.

>>> git clone <url> # get a local copy
>>> git status # informs you of changes
>>> git add <file(s)> # if you need it online
>>> git commit # saves this version
>>> git push # puts the commit online

20



Demo Time!



Our first in class demo

Instructions are here:

https://github.com/cs2043-sp16/lecture-demos/tree/master/lec03

22

https://github.com/cs2043-sp16/lecture-demos/tree/master/lec03


References I

[1] B. Abrahao, H. Abu-Libdeh, N. Savva, D. Slater, and others
over the years.
Previous cornell cs 2043 course slides.

[2] C. Hope.
Linux and unix chmod command help and examples.
http://www.computerhope.com/unix/uchmod.htm,
2016.

23

http://www.computerhope.com/unix/uchmod.htm

	Working with Files
	Types of Files and Usages
	Let's Git Started
	Demo Time!

